
Scientific Programming
(Wissenschaftliches Programmieren)

Exercise 8

 1. Unit tests
• Create a test/ subfolder and move test_solvers.py with git into this folder. Additionally create an empty

__init__.py file in this folder.

• Rewrite the tests in test/test_solvers.py so that pytest can automatically check, whether the expected and

the obtained results are close enough.

• Run the tests from the shell command line and from within your IDE. Make sure all tests pass in both cases.

• Analyze the test coverage, you should be able to reach 100%.

• Add a short section to the README about how to test the code.

• Commit your changes.

 2. Code analysis
• Check the quality of your Python source files (solvers.py, test/test_solvers.py) with pylint and mypy.

• Change the source files to avoid any complaints from mypy and to obtain a pylint score of 10.0.

• Apply the formatter black to obtain further stylistic changes.

• Commit your changes.

 3. Parametrized tests
• Rewrite the tests in test/test_solvers.py, to parametrized tests, which read their test data from files:

• For each test case, create an input file containing A and b and (if applicable) an output file containing the
expected solution x in the test/data/ subfolder within your project:

test/data/elimination_3.in, test/data/elimination_3.out,
test/data/elimination_4.in, test/data/elimination_4.out,

test/data/pivot_3.in, test/data/pivot_3.out,
test/data/lindep_3.in

• Create a parameterized test routine for verifying successful Gaussian eliminations. This routine should read
a given input file with A and b, and a given output file with the expected result x, call the Gaussian
elimination and compare the obtained result with the expected one.

• Create a parameterized test routine to check for linearly dependent systems. This routine should read an
input file with A and b, call the Gaussian elimination and verify, that it returned None (signalizing linear
dependency).

• Parametrize the two test routines, so that all four tests are executed.

• Commit your changes (including the new test data in the test/data/ folder!).

 4. *LU-decomposition
• Implement the function lu_decompose() for LU decomposition with partial pivoting. The function should

produce the LU-factorized matrix (as one matrix, see the form below) along with the permutation vector
representing the row-permutations. If the matrix is linearly dependent, the routine should return None.

• Implement the function forward_substitute() for forward substitution. It should take the LU-decomposed

matrix (as returned by the LU-decomposition routine) and a vector as arguments, solve the equation
 and return the solution vector .

• Implement the function backward_substitute() for backward substitution. It should take the LU-

decomposed matrix (as returned by the LU-decomposition routine) and a vector as arguments, solve the
equation and return the solution vector .

• Add unit tests for all three newly created functions. Make sure to test lu_decompose() also for a linearly

dependent system.

• Commit your changes to the repository.

• Revise the gaussian_eliminate() function so that it solves the linear system of equation by calling these

new functions using appropriate arguments. Rename the routine to solve() (as it does not use the Gaussian

elimination any more). Make sure, it passes all previously stored unit tests.

• Commit your changes to the repository.

• Note: Given the lower triangle matrix and the upper triangle matrix , the LU-decomposed matrix has
the form as shown below:

•

https://en.wikipedia.org/wiki/LU_decomposition

