
12 – Git basics

Scientific Programming in Python (2025)

https://atticlectures.net/scipro/python-2025/

Bálint Aradi

https://creativecommons.org/licenses/by-sa/4.0/
https://atticlectures.net/scipro/python-2025/

2

Programming project (for lectures)

linsolver

● Program package for solving linear system of equation
● It should offer the Gaussian-elimination method (LU-decomposition)
● It should read data either from file or from console and write results to file or to the console
● It should have an automatic test framework for unit tests
● It should be well documented and cleanly written.

Note: This project serves didactical purposes only,
the optimized routines of SciPy should be usually
used to solve a linear system of equations.

3

Let’s start to develop!

● Open a konsole (Linux, Mac) / Git Bash (Win)
● Initialize the right conda environment (scipro)

mkdir SciPro

● Change to the directory “SciPro”

cd SciPro

● Make the (new) directory “linsolver”

mkdir linsolver

● Change to the project directory “linsolver”

cd linsolver

Create the project folder

● Make a new directory (folder) “SciPro”

● Download the two project files and put them
into the project folder

solvers.py

test_solvers.py

Add initial content to the project

4

Let’s start to develop!

● Select the Python Interpreter from your
Conda environment
(Ctrl-Shift P opens the command palette)

Start VS Code from the project folder

code .
Pass the current
directory as argument

(your editors appearance might differ sligthly)

● Open the two Python files and inspect them
(Ctrl-P opens the file search menu)

5

Let’s start to develop!

Terminal output

● Run test_solvers.py from within your IDE

If you get various error messages about
connection to pylint in Code, install pylint
(we’ll need it later anyway):

conda install pylint

6

Let’s start to develop!

● Run “test_solvers.py” from the command line
(in a command line window, where Conda had been already activated)

python test_solvers.py python3 test_solvers.py

The project apparently needs some development ...

● Before you change anything, the project should be set under version control

Windows Linux

7

Typical scenario with version control

Scenario

● New project is started
● Program tested, everything works OK
● New functionality is added
● Suddenly, something does not work as

supposed, although it was working before
(note: testing framework apparently not
satisfactory)

Solution work-flow with version control

● Go back in history
to the last revision (evtl. by bisection),
until a correctly working version is found

● Inspect the changes
introduced in the snapshot (commit) and
find out the reason for the failure

● Fix the bug
in the most recent program version

8

Version control

● Document development history (store
snapshots of the project)

● Help coordinating multiple developers
working on the same project

● Help coordinating development of
multiple versions of a project

● Central server stores history database
● Developer must have connection to the

server for most operations (especially for
commits, checkouts or browsing history).

Main tasks Centralized VC (CVS, Subversion, …)

● Every developer has a local copy of the
full development history

● Most operations do not require network
connection (except synchronization
between developers)

Distributed VC (Git, Mercurial, ...)

9

Introduce yourself to git

● Enter your name and email address (needed for the logs)

git config --global user.name "Bálint Aradi"

git config --global user.email "aradi@uni-bremen.de"

● Specify standard tools to be used

git config --global core.editor YOUR_EDITOR

git config --global diff.tool meld

● --global stores option globally, otherwise
they apply to current project only

● Global options are stored in the
~/.gitconfig file

git config --list

● Current options can be listed with --list

Windows notepad

MacOS nano

Linux
● nano

● gedit / kate / featherpad / leafpad

● vim, emacs (if you know what you’re doing…)

10

Create a repository

● Initialize a repository in the project direcotry

cd ~/SciPro/linsolver/

git init
 Initialized empty Git repository in [...]/SciPro/linsolver/.git/

● Files within the project directory can be placed under version control
● Files within the .git directory should not be changed manually
● When copying project directory recursively (including the .git subdirectory) the entire

revision history is copied

11

Put files under version control

git status

On branch main

No commits yet

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 __pycache__/

 solvers.py

 test_solvers.py

nothing added to commit but untracked files present
(use "git add" to track)

12

Put files under version control

git add solvers.py test_solvers.py

git status

On branch main

No commits yet

Changes to be committed:

 (use "git rm --cached <file>..." to unstage)

 new file: solvers.py

 new file: test_solvers.py

Untracked files:

 (use "git add <file>..." to include [...]

 __pycache__/

● Puts files under version
control and makes a
snapshot of their current state
(stage)

● Staged files are written to the
database at the next commit

13

Ignoring files

YOUR_EDITOR .gitignore

git add .gitignore

git status

On branch main

No commits yet

Changes to be committed:

 (use "git rm --cached <file>..." to unstage)

 new file: .gitignore

 new file: solvers.py

 new file: test_solvers.py

● Files that should not be be version controlled can be listed in .gitignore in the project directory

__pycache__

● The .gitignore file should be also placed under version control

14

Commit staged files

git commit

[main (root-commit) 5270fa1] Kick off project

 3 files changed, 58 insertions(+)

 create mode 100644 .gitignore

 create mode 100644 solvers.py

 create mode 100644 test_solvers.py

git status

On branch main

nothing to commit, working tree clean

● When commit is issued, staged files (in their staged state) are written to the database

Opens editor

Write log message
(“Kick off project”),
save & exit

15

Checking project history

● Show project history:

git log

commit 5270fa191b5cbe7a83e4b1e3d406c37793e4b27a (HEAD -> main)

Author: Bálint Aradi <aradi@uni-bremen.de>

Date: ...

 Kick off project

● Individual commits are identified by hash checksums
● Checksums can be shortened as long as they are unambiguous
● --oneline option gives a short summary of the log messages (shows also shortened checksums)

git log --oneline

5270fa1 (HEAD -> main) Kick off project

16

Checking project history

commit 2a3186299e14575a40b870cc3f8eb21c1e886809

Author: Bálint Aradi <aradi@uni-bremen.de>

Date: ... [earlier]

 Add readme file

commit 04d386638495386aa29ee99e4928aad2e7731f39

Author: Bálint Aradi <aradi@uni-bremen.de>

Date: ...[later]

 Add first stub files

● Revision history and log messages are shown in reverse time order

● If history is longer than a page, it is shown
page-wise via the default pager (e.g. less)

Navigation: [Page Up/Down] Move up/down
 q Quit

17

Git-workflow

● Set up git global for your account

git config --global ...

● Set up the repository for your project

git init

● Edit files in your project
● Stage files / changes

git add ...

● Commit staged changes into repository

git commit ...

Working directory

Stage

Repository

git add

git commit

● It is possible to stage all changes in all files
which are already under version control:

git add -u

18

Some git remarks

● Changes should be commited, if implementation of a feature is finished
● Development history should be easy to follow based on the log messages
● Changes within a commit should be small enough so that a developer can easily follow and

understand them.
● Log messages should contain a short sentence (max. 50-60 chars), optionally followed by an

empty line and a more detailed description.
(See for example: How to Write a Git Commit Message)

Implement LU-decomposition with back substitution

LU-decomposition is implemented without permutation. Check
for linear dependency is not implemented yet.

● Short (one-liner) log messages can be passed on the command line

git commit -m "Add first stub files"

https://cbea.ms/git-commit/

